Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            Abstract Total solar eclipses (TSEs) are impressive astronomical events that have attracted people’s curiosity since ancient times. Their abrupt alterations to the radiation balance have stimulated studies on “eclipse meteorology,” most of them documenting events in the Northern Hemisphere while only one TSE (23 November 2003) has been described over Antarctica. On 4 December 2021—just a few days before the austral summer solstice—the moon blocked the sun over the austral high latitudes, with the path of totality arching from the Weddell Sea to the Amundsen Sea, thus producing a ∼2-min central TSE. In this work we present high-resolution meteorological observations from Union Glacier Camp (80°S, 83°W), the only location with a working station under totality, and South Pole station. These observations were complemented with meteorological records from 37 surface stations across Antarctica. Notably, the largest cooling (∼5°C) was observed over the East Antarctic dome, where obscurity was ∼85% while many sectors experienced insignificant temperature changes. This heterogenous cooling distribution, at odds with the seemingly homogeneous land surface of Antarctica, is partially captured by a simple radiative model. To further diagnose the effect of the eclipse on the surface meteorology, we ran multiple pairs of simulations (eclipse enabled and disabled) using the Weather Research and Forecasting (WRF) Model. The overall pattern and magnitude of the simulated cooling agree well with the observations and reveal that, in addition to the solar radiation deficit and cloud cover, low-level winds and the height of the planetary boundary layer are key determinants of the temperature changes and their spatial variability.more » « less
- 
            Abstract Atmospheric rivers (ARs) reaching high-latitudes in summer contribute to the majority of climatological poleward water vapor transport into the Arctic. This transport has exhibited long term changes over the past decades, which cannot be entirely explained by anthropogenic forcing according to ensemble model responses. Here, through observational analyses and model experiments in which winds are adjusted to match observations, we demonstrate that low-frequency, large-scale circulation changes in the Arctic play a decisive role in regulating AR activity and thus inducing the recent upsurge of this activity in the region. It is estimated that the trend in summertime AR activity may contribute to 36% of the increasing trend of atmospheric summer moisture over the entire Arctic since 1979 and account for over half of the humidity trends in certain areas experiencing significant recent warming, such as western Greenland, northern Europe, and eastern Siberia. This indicates that AR activity, mostly driven by strong synoptic weather systems often regarded as stochastic, may serve as a vital mechanism in regulating long term moisture variability in the Arctic.more » « less
- 
            Abstract Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) that caused these record-shattering temperature anomalies. Here, we continue our large collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall. These impacts included widespread rain and surface melt that was recorded along coastal areas, but this was outweighed by widespread high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Last, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea ice extent. Significance StatementUsing our diverse collective expertise, we explored the impacts from the March 2022 heat wave and atmospheric river across East Antarctica. One key takeaway is that the Antarctic cryosphere is highly sensitive to meteorological extremes originating from the midlatitudes and subtropics. Despite the large positive temperature anomalies driven from strong downward longwave radiation, this event led to huge amounts of snowfall across the Antarctic interior desert. The isotopes in this snow of warm airmass origin will likely be detectable in future ice cores and potentially distort past climate reconstructions. Even measurements of space activity were affected. Also, the swells generated from this storm helped to trigger the final collapse of an already critically unstable Conger Ice Shelf while further degrading sea ice coverage.more » « less
- 
            Abstract Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. This record-shattering event saw numerous monthly temperature records being broken including a new all-time temperature record of −9.4°C on 18 March at Concordia Station despite March typically being a transition month to the Antarctic coreless winter. The driver for these temperature extremes was an intense atmospheric river advecting subtropical/midlatitude heat and moisture deep into the Antarctic interior. The scope of the temperature records spurred a large, diverse collaborative effort to study the heat wave’s meteorological drivers, impacts, and historical climate context. Here we focus on describing those temperature records along with the intricate meteorological drivers that led to the most intense atmospheric river observed over East Antarctica. These efforts describe the Rossby wave activity forced from intense tropical convection over the Indian Ocean. This led to an atmospheric river and warm conveyor belt intensification near the coastline, which reinforced atmospheric blocking deep into East Antarctica. The resulting moisture flux and upper-level warm-air advection eroded the typical surface temperature inversions over the ice sheet. At the peak of the heat wave, an area of 3.3 million km2in East Antarctica exceeded previous March monthly temperature records. Despite a temperature anomaly return time of about 100 years, a closer recurrence of such an event is possible under future climate projections. In Part II we describe the various impacts this extreme event had on the East Antarctic cryosphere. Significance StatementIn March 2022, a heat wave and atmospheric river caused some of the highest temperature anomalies ever observed globally and captured the attention of the Antarctic science community. Using our diverse collective expertise, we explored the causes of the event and have placed it within a historical climate context. One key takeaway is that Antarctic climate extremes are highly sensitive to perturbations in the midlatitudes and subtropics. This heat wave redefined our expectations of the Antarctic climate. Despite the rare chance of occurrence based on past climate, a future temperature extreme event of similar magnitude is possible, especially given anthropogenic climate change.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
